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 i  g  h  l  i g  h  t  s

The paper  is  about  a noise  reduction  method  for  resting  state  fMRI  data.
Gaussian  Mixture  Model  is  used  for  classification  of fMRI  data.
White and  Rician  noises  were  considered  to test  the  efficiency  of  algorithm.
The reference  template  for  artificial  data  was  completely  noiseless.
Given  fMRI  data  was  referenced  as  template  to test  for  additional  noise.
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a  b  s  t  r  a  c  t

Neuroimaging  the  default  mode  network  (DMN)  in resting  state  has  been  of  significant  interest  for  inves-
tigating  pathological  conditions  as  resting  state  data  are  less  affected  by  the  variability  in the  subject’s
performance  and  movement-related  artefacts  in  the  electromagnetic  field  which  are  often  issues  in  event-
related  activation  experiments.  An  issue  to be considered  with  resting  state  data  is the very  low  amplitude
of  the  activation  patterns  which  are  not  induced  by  any  stimulation  or stimulus  paradigm.  Though,  many
studies have  suggested  that  amplitude  of  low  frequency  fluctuation  (ALFF)  analysis  is suitable  for  resting
state  functional  magnetic  resonance  imaging  (fMRI)  data  analysis,  the low  signal-to-noise-ratio  (SNR)  of
acquired  neuroimaging  data  poses  a significant  problem  in  the accurate  analysis  of  the same.  In  this  work,
a Gaussian  Mixture  Model  (GMM)  method  to  suppress  the  noise  during  data  pre-processing  before  ALFF

is applied  (GMM-ALFF)  is proposed,  where  the  optimum  numbers  of Gaussian  distributions  are  fitted to
the  data  using  the  Bayesian  information  criterion  (BIC).  The  method  has  been  tested  with  artificial  data
as well  as  real  resting  state  fMRI  data  collected  from  Alzheimer’s  disease  patients  with  different  levels
of added  noise.  Improvement  of as much  as 40%  for artificial  datasets  and  at  least  3%  for  real  datasets
(p  <  0.05)  have  been  observed  when  applying  the  proposed  GMM  approach  prior to  the analysis  with  the
existing  ALFF  approach.
. Introduction

Analysis of resting state neuroimaging data, while comparing
he pathological conditions in disease against age matched healthy
ontrol subjects, has found displacement in the region of origin and
ecreased strength in the fMRI signal (Buxton et al., 2005; Raichle
t al., 2001). Decrease in the signal strength has been defined by
any as deactivation while an increase in the activity is considered

s compensating behaviour of brain functions (Raichle et al., 2001).
owever, suppressions of activation cannot always be considered

s ‘deactivation’ as some areas, which show this decrease in activ-
ty, are found to generate a significant level of activity during the
est state (Raichle et al., 2001). These activations have been found to

∗ Corresponding author. Tel.: +44 28 71675085.
E-mail addresses: garg-g@email.ulster.ac.uk, gauravgarg4@gmail.com (G. Garg),
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© 2013 Elsevier B.V. All rights reserved.

show significant but slow (<0.08 Hz) rhythmic blood oxygen level
dependent (BOLD) metabolic activity when recorded using Positron
Emission Tomography (PET) and fMRI based neuroimaging tech-
niques (Buxton et al., 2005).

Many studies have suggested the existence of a specific cor-
relation pattern in such resting state Default Mode Networks
(Raichle et al., 2001; Keller et al., 2011). Most commonly, the tech-
niques included calculating correlation between signals obtained
from various distant brain areas to develop some inference about
the synchronization and connectivity pattern among them. Other
methods using higher order statistics such as Independent Com-
ponent Analysis (ICA), when applied on the resting state fMRI data,
have also shown to be promising for detecting connectivity patterns
in DMNs (Raichle et al., 2001).
Amplitude of Low Frequency Fluctuation (ALFF) is a method pro-
posed to measure the temporal similarity of voxels within a given
cluster in a voxel-wise fashion for the given range of frequency
response (Yang et al., 2007). It was found that the brain areas with

dx.doi.org/10.1016/j.jneumeth.2013.02.015
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he highest ALFF were located within the default mode network
Raichle et al., 2001; Keller et al., 2011).The reliability of many of the
roposed methods is an on-going issue because of a multitude of
oise sources in the fMRI scanning environment. This noise can be
f a non-biological as well as biological nature. Biological noise can
e caused by human factors such as random neural processes and
ackground brain activity not related to subject of interest, heart
eats, breath cycle and anything causing physical movements, etc.
iological noise is generally reduced by training the subject and
roviding some aid to reduce head movement inside the scanning
nvironment. Non-biological sources of noise are the gradual or
brupt change in fMRI magnetic fields due to thermal effect and
rift in the fMRI magnets with time. Such types of noise reduce the
NR of sophisticated brain signals being recorded by fMRI devices
nd hence need to be better analysed by complex computational
ethods (Chen and Tyler, 2008). Here, we propose an improved
ethod which is based on Gaussian Mixture Models (GMM)  and

hows greater robustness for noise compared to traditional ALFF.
ur previous work has demonstrated successful application of a

imilar GMM  (Garg et al., 2009, 2011a, 2011b)  based method for
MRI data obtained during an auditory stimulus driven paradigm.

We have applied the proposed GMM-ALFF method to investi-
ate the resting state DMNs on two types of data: (1) an artificially
imulated data-set with additive white Gaussian noise (AWGN) and
ician noise (RN) (Sled et al., 1998) and (2) real fMRI data from six
lzheimer’s disease (AD) patients provided in the Alzheimer’s Dis-
ase Neuroimaging Initiative (ADNI) online data repository (Weiner
t al., 2012). In the current work, we demonstrate the efficacy of
ombining the GMM  approach with the ALFF through a compara-
ive evaluation.

. BOLD signals modelled by GMM

The BOLD signals (Buxton et al., 2005) of a human brain repre-
ented by voxels in an fMRI image can be assumed to be the result of
nteraction of a large number of neuronal activations in the brain.
herefore, an fMRI voxel value can be represented as a weighted
um of the individual effect of each of these activations. According
o the central limit theorem, the weighted sum of a large number
f independent random variables follows a Gaussian distribution
Garg et al., 2009, 2011a, 2011b). Moreover, for a better character-
zation of the neuronal activities in different brain regions, these
OLD fMRI signals can be considered a result of contributions from
ifferent sets of neuronal assemblies. A GMM  is a weighted sum of

 number of Gaussian distributed components (clusters). As GMMs
omprise of multiple Gaussian components, these can realistically
odel fMRI images.
Assuming that an fMRI image is modelled by an N component

MM,  with Gaussian mixture variable x = (x1, x2, x3, . . .,  xN) gener-
ted from N stochastic processes, where a stochastic process n has

 probability density function (PDF) gn(x/�n), then the PDF for the
ixture model will be:

(x|�) =
N∑

n = 1

(
pngn

(
x

�n

))
, (1)

here gn(x/�n) = ((1/
√

2��2
n ) exp(−(x − �n)2/2�2

n )) and pn is the
roportion of the nth process in the given mixture, such that pn ≥ 0
nd
∑N

n = 1pn = 1, and � =
⋃N

n = 1�n is the set of parameters con-
isting of �n and �n.

The likelihood function for the given mixture model can be
efined as:
(x|�) =
K∏

j = 1

N∑
n = 1

(
pngn

( xj

�n

))
(2)
Fig. 1. BIC convergence plot for subject 1 with Rician Noise case, a red mark at 4th
cluster shows the achieved minimum BIC value.

Here, K is the total number of observed data samples and xj is the
jth observation. We take the logarithm of the likelihood function to
make it easier to calculate.

L(x|�) =
K∑

j = 1

(
ln

N∑
n = 1

(
pngn

( xj

�n

)))
(3)

So the complete log-likelihood function for GMM  can be given
as

L(x|�) =
K∑

j = 1

(
ln

(
N∑

n = 1

pn

(
1√

2��2
n

exp

(
− (xj − �n)2

2�2
n

))))

(4)

The Bayesian Information Criterion (BIC) is then applied to select
the optimal number of clusters as it was  suggested as best among
other available criteria including log likelihood, Akaike’s informa-
tion criterion (AIC) and Weighted AIC for biological data of coronary
heart disease (Fonseca, 2008), BOLD fMRI data (Garg et al., 2011a)
and statistical data for patient care management (Garg et al., 2009,
2011b). BIC is estimated as follows:

BIC = 2L(x|�) + C ln(K) (5)

Here, K is the total number of observed data samples and C is
the degrees of freedom for the number of free parameters. Each of
the distributed mixture has three characteristic parameters, sample
mean, standard deviation and proportion of contribution of that
cluster. So the degrees of freedom for N distributed components
(stochastic processes) is C = 3N − 1.

This Gaussian Mixture Model based clustering with Bayesian
Information Criterion is used to find the most stable distribution
of the mixture components in the brain volume. Fig. 1 shows a
BIC value plot for real fMRI data obtained from a single subject.
Here, when the algorithm achieves the minimum BIC value for four
clusters and does not reduce further, then according to BIC these
four clusters are the optimal clusters for this subject’s data.

3. Materials and methods
3.1. Artificial fMRI dataset

The artificial dataset has been generated using the boxcar
sequence of various frequencies correlated with different cubical
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Table  1
Characteristic details of AD subjects.

Patient Sex Age

1 F 75
2 M 87
3 F  63
4  F 72
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5  F 63
6  M 87

locks as placed in the brain phantom/mask (Dimitriadou et al.,
004). We  generated six artificial datasets with different Signal-to-
oise Ratios SNRs (Dimitriadou et al., 2004) (for SNR values 16, 8,
, 2, 1 and 0 dB) contaminated with additive white Gaussian noise
AWGN) (MATLAB, 2012; Chen and Tyler, 2008). Also, six datasets
ith added Rician noise (RN) (Sled et al., 1998) for SNR values of 16,

4, 12, 10, 8, and 6 dBs were also created. Rician noise was gener-
ted using the “Rice/Rician distribution” toolbox (RDT) for MATLAB.
hese datasets have been formed using activation blocks of variable
requency ranging from 0.01 Hz to 0.08 Hz (Chen and Tyler, 2008;
aichle et al., 2001; Yang et al., 2007).

A standard brain phantom/mask of volume 61 × 73 × 61 voxels
as employed. Eighteen blocks of volume 12 × 12 × 12 each were

ormed. The scans were then modulated with different frequen-
ies to generate the activations corresponding to those frequencies
f low speed fluctuations between 0.01 Hz and 0.08 Hz across 140
cans. These noiseless 3D brain volumes were contaminated with
he aforementioned noise signals. We  have used the available MAT-
AB function for generating AWGN for different SNRs. Similarly for
ician noise, the initial steps were the same for the noiseless data
reparation then Rician type noise was added for different SNRs.
or the Rician noise function (Sled et al., 1998) it was  not possi-
le to define the precise value of SNRs, and it was  not possible to
roduce SNR values less than 6 dB approx. Therefore, we generated
arious combinations of s and v values as given below:

∼ricernd(v, s),

here R =
√

X2 + Y2, X∼N(v cos(a), s2) and Y∼N(v sin(a), s2).
hese combinations of s and v were tested for dB SNR
sing the mean (�) and standard deviation (�) (as shown
elow in (6))  calculated using the ricestat function as given

n the Rice/Rician Distribution Toolbox (RDT) for MATLAB
eveloped in 2008 by G. Ridgway http://www.mathworks.com/
atlabcentral/fx files/14237/3/rician.zip (Sled et al., 1998).

BSNR Rician = 20 log10

(
�

�

)
(6)

.2. Real fMRI datasets

The fMRI dataset from the ADNI online data repository was
ecorded from a total of 6 (4 females and 2 males) AD patients,
here all the subjects were aged 60 years or older. All subjects
ere instructed to remain in the resting state but awake and not

o think anything specific during the data acquisition. These scans
ere acquired using a Philips Medical Systems Integra 3T scan-
er, where the time of repetition (TR) and time of echo (TE) were
000 ms  and 30 ms,  respectively. A total of 140 (420 s) whole-brain
64 × 64 × 48) scans were recorded for each subject; here the thick-
ess of each voxel was 3.3 mm.  Further details are given in Table 1.

.3. Proposed method
The first step was to pre-process the available artificial and real
atasets. The SPM toolbox (Friston et al., 1994; MATLAB, 2012)
as used for pre-processing the data. All the pre-processing steps
ce Methods 215 (2013) 71– 77 73

were very similar to the previous study (Garg et al., 2011a)  except
the normalization, where we developed a template for one subject
using the available Montreal Neurological Institute (MNI) template
and then normalized the other subjects to that template (Song et al.,
2011). This step is required to make the headshape comparable
among the subjects and to analyse them together for similar types
of activation patterns in resting state data (Raichle et al., 2001).
The other steps included re-slicing and re-aligning, co-registering,
segmentation and smoothing (Ashburner et al., 2012). De-trending
of the time-series data for all the voxels was also performed to
remove any linear trends and to minimize the effects of the changes
in the data characteristic due to thermal effects and various other
equipment related constraints (Song et al., 2011).

3.3.1. The ALFF method
After the preparation of the datasets, the data were spatially

smoothed and low pass filtered below 0.01 Hz, as the DMN  has
been found to be consistent up to this frequency; also respiration
and pulse artefacts are much less prominent up to this frequency
(Raichle et al., 2001). A frequency power spectrum analysis of the
time-series was observed at each voxel. The power spectrum was
calculated by squaring the amplitude in frequency domain using
the fast Fourier transform (FFT).The averaged square root of the
power spectrum was performed to calculate the average amplitude
of activation for the required range of 0.01–0.08 Hz. This averaged
square root is referred to as Amplitude of Low-Frequency Fluctu-
ation (ALFF) (Yang et al., 2007; Song et al., 2011). ALFF has been
scaled by the global mean value for the regions corresponding to a
mask obtained for the brain structure.

3.3.2. The GMM-ALFF method
After pre-processing of the given fMRI data, GMM  was  applied

on the data to reduce the effect of noise by distributing the data in
an optimal number of clusters, selected using the Bayesian Infor-
mation Criterion (BIC) (Fonseca, 2008). These steps were repeated
one-by-one for each subject (cf. Fig. 2 for an illustration of the steps).
Subsequently, the data were processed using the same approach to
that applied for the ALFF method (Yang et al., 2007; Song et al.,
2011) described in the previous section.

4. Results

Many of the clustering performance calculation methods have
used the Jaccard’s coefficient (Dimitriadou et al., 2004) as an
index of measurement and validation of the calculated results with
respect to the known reference template, where the regions of true
activity are already known. In this work the aim is to use a method
that is capable of finding the true activations and at the same time
not misidentifying the regions of activation. A modified coefficient
of accuracy Jaccuracy is therefore calculated as the ratio of the sum of
true positives (TPs) and True Negatives (TNs) and the sum of true
positives (TPs), false positives (FPs), True Negatives (TNs) and false
negatives (FNs) (Demirci et al., 2008).

Jaccuracy = TPs + TNs

TPs + FPs + TNs + FNs
(7)

The reliability and robustness of the proposed algorithm has
been estimated for those cases where the variation between active

and inactive regions is minimal and thus identification of bound-
aries between individual regions is difficult. For this we  considered
the precision index calculation Jprecision. The precision index pro-
vides information about the performance of an algorithm that can

http://www.mathworks.com/matlabcentral/fx_files/14237/3/rician.zip
http://www.mathworks.com/matlabcentral/fx_files/14237/3/rician.zip
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Fig. 2. Calculation steps of the proposed ALFF with GMM algorithm.

Table 2
Comparison between ALFF and GMM-ALFF methods for artificial AWGN data.

SNR (dB) ALFF Without GMM  (%) ALFF with GMM  (%) Wilcoxon signed-rank test p-value

Accuracy Precision Accuracy Precision Accuracy Precision

16 100 99 100 100 0.0625 0.0313
8  94 51 100 100
4  87 32 100 97
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deally avoid False Positives (FPs) and the algorithm’s precision in
etecting regions which are truly active (Dettori and Semler, 2007).

precision = TPs

TPs + FPs
(8)

.1. Artificial data (with AWGN noise)

.1.1. ALFF method
Table 2 presents a comparison of the accuracy and precision

esults between the ALFF and GMM-ALFF methods for artificial data
ith different levels of AWGN. As can be seen from the results (cf.

able 2), the precision of the ALFF method is lower than GMM-
LFF for SNR less than 16 dB, while it is capable of characterizing

he true positives for even 1 dB SNR but at the same time it appears
nreliable because of the detection of false regions of activation as
hown (cf. Fig. 3(a) and (b)). It can be clearly seen from the images
iven in Fig. 3(b) that the effect of noise is apparent on the ALFF for
ven 8 dB SNR case whilst for GMM-ALFF the activation detection
s consistent even at highest levels of noise.

.1.2. GMM-ALFF method
In comparison to the ALFF method, it can be seen from the results

cf. Table 2) that the precision of GMM-ALFF reduces severely only
or the SNR less than 4 dB (cf. Fig. 3(c) and (d)). The images given in
ig. 3(d) clearly show that the GMM-ALFF approach is only affected
ith noise significantly below 2 dB noise cases. Table 2 shows that

he differences in the accuracy and precision values obtained by two
pproaches are more than 15% and 40%, respectively. When tested
ith Wilcoxon signrank test these difference between the meth-

ds (cf. Table 2) were found to be statistically significant (p < 0.05)
n terms of precision (p = 0.0313), but the difference in terms of
ccuracy (p = 0.0625) are not.

.2. Artificial data (with Rician noise)

.2.1. ALFF method
The data with added Rician noise was processed in the same

ay as that with AWGN. The slices in Fig. 4(b) show that patches

f noise are clearly visible for low SNR of 8 dB and 6 dB. The effect
f Rician noise was not as severe as the AWGN, as can be seen from
he images (cf. Fig. 4(b) and (d) and also from Table 3). The tradi-
ional ALFF method worked quite well in identifying the regions of
96
87
65

activations, but the GMM-ALFF significantly outperformed the tra-
ditional ALFF for precision in avoiding false activations, as discussed
next.

4.2.2. GMM-ALFF method
The GMM  based method generated better results for the Rician

noise. From Fig. 4(c) and (d), we  can clearly see that noise levels
up to 8 dB are not substantial but been suppressed effectively and
visually there is minimal evidence noise, which has been further
verified with the statistical analysis. In fact, the accuracy and pre-
cision remained constant at 100% for various noise cases whereas
the classic ALFF method resulted in gradual reduction in accuracy as
well as precision with the decreasing SNR (cf. Table 3). The improve-
ment in the precision values obtained was  up to 25% for the 6 dB
SNR. For the Rician noise case the results suggest the improvement
in accuracy and precision given by the GMM  based approach are
significant: Accuracy (p = 0.05) and precision (p = 0.031).

4.3. Real data mixed with AWGN

For evaluating the noise reducing capability of GMM,  we also
injected the same levels of noise in the real data as we did for the
artificial datasets as discussed below.

4.3.1. ALFF method
The fMRI slices displayed in Fig. 5(a) and (b) are from subject 1

out of the 6 subjects, where data was  contaminated with AWGN  for
SNRs values of 16, 8, 4, 2, 1 and 0 dB, respectively, from left to right.
As can be seen from Fig. 5(a) and (b), when the ALFF was  applied
on the data with 1 dB SNR, it got distorted so heavily that the ALFF
without GMM  could not even recover the whole slice.

4.3.2. GMM-ALFF method
As can be seen from the slices in Fig. 5(c) and (d), the proposed

GMM  based ALFF method successfully recovered the whole slice
for all SNR values. It achieved higher cross-subject mean accuracy
and precision (cf. Table 4) than the ALFF without GMM  approach.
Below the SNR value of 16 dB (cf. Table 4) the differences between

ALFF with and without GMM  were significant (p < 0.05) (a Wilcoxon
signed rank statistical test was  applied on the 6 data-sets from all
six subjects). The precision of the observed activation regions for
the fMRI data was more than 4% higher on average when GMM  is
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Table  3
Comparison between ALFF and GMM-ALFF methods for artificial RN data.

SNR (dB) ALFF Without GMM  (%) ALFF with GMM  (%) Wilcoxon signed-rank test p-value

Accuracy Precision Accuracy Precision Accuracy Precision

16 100 99 100 100 0.050 0.0313
14  100 99 100 100
12  100 99 100 100
10 100 99 100 100

8 99  98 100 100
6  97 75 100 100

Fig. 3. Brain fMRI slice for artificial data with AWGN: with ALFF alone (a) reference template and (b) results; and similarly, for ALFF with GMM:  (c) reference template, and
(d)  results for SNR of 16, 8, 4, 2, 1 and 0 dB, respectively, from left to right.

Fig. 4. Brain fMRI slice for artificial data with RN: for ALFF alone (a) reference template and (b) results; and similarly, for ALFF with GMM: (c) reference template and (d)
results  for SNR of 16, 14, 12, 10, 8 and 6 dB respectively from left to right.

Fig. 5. Brain fMRI slice for sub 1 data with AWGN: for ALFF alone (a) reference template and (b) results; and similarly for ALFF with GMM:  (c) reference template and (d)
results  for SNR of 16, 8, 4, 2, 1 and 0 dB respectively from left to right.
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Table  4
Comparison between ALFF and GMM-ALFF methods for real AWGN data for 6 subjects.

SNR (dB) ALFF (mean) (%) ALFF with GMM  (mean) (%) Wilcoxon signed-rank test p-value

Accuracy Precision Accuracy Precision Accuracy Precision

16 70 59 73 64 0.09375 0.03125
8  68 57 72 61 0.03125 0.03125
4  68 56 70 60 0.03125 0.03125
2 68 56 70 59 0.03125 0.03125
1 66  57 69 59 0.0625 0.03125
0  64 56 69 59 0.0625 0.03125

Table 5
Comparison between ALFF and GMM-ALFF methods for real data with RN for six subjects.

SNR (dB) ALFF (mean) (%) ALFF with GMM  (mean) (%) Wilcoxon signed-rank test p-value
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sed, which is a substantial improvement over the ALFF without
MM  based method.

.4. Real data mixed with Rician noise

Adding Rician noise in real data provided similar results to those
btained for the artificial data. The procedure to apply the Rician
oise was similar to the artificial data. We  observed the effect
f applying our proposed GMM-ALFF method in comparison to
he classical ALFF approach. Both methods were able to maintain
he consistency for noise removal for various SNR levels, although
MM  based ALFF again outperformed the traditional ALFF method
ignificantly for both accuracy and precision (p < 0.05) (cf. Table 5
nd Fig. 6). The improvement in the mean precision across 6 sub-
ects was at least 3% for all the noise cases which suggests that
MM-ALFF would provide less false activations than a traditional
LFF. Again the differences are statistically significant.

The results thus show that the GMM  based approach can
mprove the accuracy in both the artificial and real data cases with
arying noise levels of different types, Gaussian and Rician. The
ther significant improvement was not only the consistency of bet-
er results for low SNR values of up to 4 dB in cases of Gaussian
oise and 6 dB in case of Rician Noise, but also preserving all fMRI
rain regions by being robust to higher noise values in cistern areas,
here the classic ALFF (cf. Figs. 5(b) and 6(b)) method has failed

everely.
. Discussion

This study mainly investigated the effects of noise on the
rocessing of fMRI images. It has been suggested in the literature

ig. 6. Brain fMRI slice for sub 1 real data with RN: for ALFF alone (a) reference template
esults  for SNR of 16, 14, 12, 10, 8 and 6 dB respectively from left to right.
y Precision Accuracy Precision

83 0.03125 0.03125

that when the objective is to analyse disease related changes,
analysing resting state data is more meaningful because of the dif-
ferences in the ways of performing a specific action by various
subjects (Raichle et al., 2001; Yang et al., 2007). For example, it
is much easier for the operator and much less onerous on the par-
ticipant, particularly if they suffer from conditions such as AD, to
ask the participant to relax as opposed to performing a task which
involves memory challenges and movement to react to stimuli.
This can be daunting for participants. There are several methods
suggested to analyse BOLD resting state data obtained from fMRI
where calculating the low frequency responses from the fMRI data
has been suggested as the most suitable due to fact that the higher
frequency responses are affected by noise more. The REST toolbox
(Song et al., 2011) for resting state fMRI has included a method for
low frequency response analysis, the Amplitude of Low Frequency
Fluctuation (ALFF) (Yang et al., 2007) tested in this work, which
can be used to calculate the low frequency changes in the fMRI
data as described previously. This toolbox performs well under low
noise conditions. But the high noise in the fMRI environment espe-
cially near to the cistern areas can obscure the underlying BOLD
processes. To account for this, we have developed a GMM  based
method to perform a noise stabilizing step before the ALFF analysis.
In this paper, our method has been applied for processing an artifi-
cial data-set as well as an Alzheimer’s Disease patients’ datasets
and has resulted in significant performance improvements. The
artificial data-set was injected with additive white Gaussian noise
(AWGN) for creating data with six different SNR values. The AWGN

applied artificial datasets were recovered well for up to 2 dB SNR
when GMM-ALFF was applied, while for ALFF without GMM,  the
precision reduced by 48% approx. below 16 dB SNR. Similarly,
datasets with added Rician noise (RN) were also recovered well for

 and (b) results; and similarly, for ALFF with GMM:  (c) reference template and (d)
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ll the noise cases though with statistically significant differences
or 6 dB SNR only. Along with the average improvement of 4% in pre-
ision values for real data with AWGN, our GMM  based approach
as able to recover whole brain structure (cf. Fig. 5(d)) where clas-

ic ALFF failed for SNR less than 4 dB (cf. Fig. 5(b)). This suggests that
he ALFF method is more prone to information loss due to the noise
enerated in the fMRI environment. An important aspect worth
ighlighting in terms of the activation detection provided by the
LFF alone is that the regions of activation mainly near to the cistern
reas were affected heavily by fMRI environmental noise, while the
MM  based method was able to recover the activity in whole brain

ncluding cistern areas. This is also depicted in the consistency of
he changes in the activation pattern for the increasing noise cases
here ALFF provided significant changes from cistern regions to
hole slice while GMM  based ALFF showed more stability in the

esulting patterns for increasing noise. The percentage improve-
ent in the case of RN applied on real data is also 3% on average
ith the similar improvement in noise stabilization for cistern

egions as found in the AWGN cases. Unlike artificial data, percent-
ge improvement for real data is stated very less, because for real
ata we do not have a noiseless template to refer, therefore we  have
nly stated the relative stability of proposed algorithm for addi-
ional Gaussian and Rician noise to already noisy reference brain
ata.

Although the GMM  method was found to make significant
mprovement in performance, there are a few limitations in using
his method, which are mainly related to the computational
esource and time required. Being an expectation maximization
ased algorithm, this method requires load all the data arrays in
emory and to find the true global optima for the whole data and

herefore requires substantial memory. Also, decision about the
umber of clusters is made based on a minimum BIC value obtained
fter exhaustively searching various cluster combinations. This
eeds several iterations to calculate the three characteristic param-
ters: mean, standard deviation and proportion of the data. The
ime taken by this calculation increases exponentially with the
umber of possible clusters.

Overall, the advantages for noise stability in precision values
ver computational time and resources are more important as
he data is being processed offline and suggests that GMM  can
rovide significant improvement when used together with the ALFF
ethod.

. Conclusion and future work

A method to reduce the noise effects from the resting state
MRI data of AD patients has been proposed. The results suggest
hat treating the data with GMM  before performing the activa-
ion detection and analysis using the ALFF method for resting state
ata significantly improves the results. This GMM-ALFF approach
as been compared with the existing ALFF method for the anal-
sis of artificial as well as real resting state fMRI data. For the
WGN, the GMM  supported ALFF was found stable for the SNR

evel as low as 2 dB, while the ALFF alone failed below the noise
evels of 16 dB SNRs. Similarly for the RN mixed data, an improve-

ent of more than 40% was recorded in precision with GMM  based
LFF. Also, we applied these methods on real data with the same
WGN and RN and found significant differences in the results of
ore than 3% for precision (or rate of generation of false positives)
iven by the proposed GMM-ALFF method. GMM  based clustering is
table and the results are reproducible, therefore it can be success-
ully used where other clustering methods suffer some uncertainty
n the resulting number of clusters. Here, we have successfully
ce Methods 215 (2013) 71– 77 77

incorporated BIC to decide the optimum number of clusters. The
future work already underway is to develop a stand-alone method
to find the regions of activation for the underlying default mode
processes in the resting state data including analysis of changes in
the BOLD based on the movement of the clusters. This variability
of clusters would provide information about the spontaneity of the
changes in various brain regions. Another method based on BOLD
correlations with low frequency changes in fMRI, which is based
on our previous research (Garg et al., 2011a)  for activation region
detection in a specific paradigm based data using GMM is also being
developed.
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